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Abstract: For development of electric machines, particularly induction machines, temperature limit is a key factor affecting 
the efficiency of the overall design. Since conventional loading of induction motors is often expensive, the estimation of 
temperature rise by tools of mathematical modeling becomes increasingly important and as a result of which computational 
methods are widely used for estimation of temperature rise in electrical machines. This paper describes the problem of two 
dimensional steady state heat flow in the stator of induction motor. The stator being static is prone to high temperature and 
the study of thermal behavior in the stator is useful to identify the causes of failure in induction machines. The temperature 
distribution is obtained using finite element formulation and employing arch shaped elements in the r-θ plane of the 
cylindrical co-ordinate system. This model is applied to one 3-phase slip ring induction motor of 75 kW rating. 
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Introduction 
Considering the extended use of squirrel cage induction machine in industrial or domestic applications both as motor and 
generator, the improvement of the energy efficiency of this electromechanical energy converter represents a continuous 
challenge for the design engineers, any achievements in this area meaning important energy savings for the world economy. 
Thus to design a reliable and economical motor, accurate prediction of temperature distribution within the motor and 
effective use of the coolant for carrying away the heat generated in the iron and copper are important to designers[18].    
Traditionally, thermal studies of electrical machines have been carried out by analytical techniques or by thermal network 
method [8], [9]. Numerical techniques based on either finite difference method [10], [11] or finite element method [1]-[8], 
[14]-[20] are more suitable for analysis of complex system. Most of the earlier designers and researchers have traditionally 
adopted analytical methods such as separation of variables, conformal mapping, and resistance analog networks for 
prediction of temperatures. The analytical work is largely limited and that too with many major assumptions. Even though the 
resistance analog method predicts average temperatures quite accurately, the method failed in predicting hot spot 
temperatures. Finite difference is one of the popular numerical methods widely used. The estimation of core iron and copper 
winding temperatures in electrical machines, the finite difference method had been normally employed. Even though this 
method predicts hot spot temperatures, the method is not as flexible as finite element method in handling complex boundary 
condition and geometry. Rajagopal [5] and Sarkar [7] have carried out extensive two-dimensional steady state and transient 
thermal analysis of TEFC machines using Finite Element Method (FEM). Recent advances in Computational 
Electromagnetics, encouraged by continuing increase of power and speed of computers, make finite elements and related 
techniques an attractive alternative to well established semi-analytical and empirical design methods, as well as to the still 
popular ‘trial and error’ approach 
Temperature rise forms a basic factor in the design of electrical machines and the heating is due to the losses occurring in the 
machine. As heat is developed in a machine its temperature rises, and if it is unable to dissipate heat to the surrounding 
environment, its temperature will increase to an extremely high value. However, the rates of heat transfer from the outer 
surface of the machine to the surrounding medium increases with the rise in temperature until after a certain time when the 
temperature ceases to rise. This occurs when the amount of heat dissipated into the surrounding atmosphere per unit time 
equals the heat dissipated in that time. 
In this paper, the finite element method is used for predicting the temperature distribution in the stator of an induction motor 
under steady state conditions, using arch-shaped finite elements with explicitly derived solution matrices. A general 
derivation of the finite element equations by the method of weighted residuals (Galerkin’s method) is introduced. A 39-
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element two-dimensional slice of armature iron, together with copper winding bounded by planes at mid-slot, mid-tooth and 
mid-package, are used for solution to a heating problem, and this defines the scope of this technique. The requirements of 
computer storage for a large number of elements have been reduced by the use of half band-width of the symmetric matrices 
so that the computing costs can be greatly reduced. The model is applied to one slip-ring induction motor of 75 KW rating 
and the temperatures obtained are found to be within the permissible limit in terms of overall temperature rise computed from 
the resulting loss density distribution. 
 
Steady Heat Conduction  
The general form of the heat conduction equation can be described by the following relations 

q V T                                                            (1) 

q Q                                                                (2) 

Where,           T is the potential function (temperature) 
                       V is the medium permeability (thermal conductivity) 
                       q is the flux (heat flux) 
                       Q is the forcing function (heat source) 
Combining equations (1) and (2), one obtains the general partial differential equation describing the two dimensional heat 
conduction problem. 

 V T Q                                                     (3) 

In cylindrical polar co-ordinates, equation (3) can be expanded as 
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Where, Vr, Vθ are thermal conductivities in the radial and circumferential directions respectively. 
 
Finite Element Analysis (Galerkin’s Method) 
The Galerkin’s criterion for heat conduction equations are used for furnishing thermal problems. When only the governing 
differential equations and their boundary conditions are available, Galerkin’s methods are convenient in a way that this 
approach surfaces the variational method in generality and further broadens the range of applicability of the finite element 
method. Through the element equations derived for those problems were explicitly evaluated only for the simplest type in 
each case, the equations are general and apply for many element shapes and displacement models. The popularity of the 
method stems mainly from the case with which irregular geometries and implicit natural boundary conditions can be handled. 
Another important advantage is that the method allows development of general computer program that can solve variety of 
thermal problems simply by accepting different input data. The computer program illustrates how a real problem is actually 
solved by the finite element methods. It is envisaged that such programs would be useful for future studies of more 
complicated problems. 
The solution of equation (4) can be obtained by assuming the general functional behavior of the dependent field variable in 
some way so as to approximately satisfy the given differential equation and boundary conditions.  Substitution of this 
approximation into the original differential equation and boundary condition then results in some error called a residual. This 
residual is required to vanish in some average sense over the entire solution domain. 
The approximate behavior of the potential function within each element is prescribed in terms of their nodal values and some 
weighting functions N1,N2 ... such that 

i iT N T                                                                   (5) 

i=1,2,….,m 
The weighting functions are strictly functions of the geometry and are termed interpolation functions. These interpolation 
functions determine the order of the approximating polynomials for the heat conduction problem. 
The method of weighted residuals determine the ’m’ unknowns Ti in such a way that the error over the entire solution domain 
is small. This is accomplished by forming a weighted average of the error and specifying that this weighted average vanishes 
over the solution domain. 
The required equations governing the behaviour of an element is given by the expression 
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Equation (6) expresses the desired averaging to the error or residual within the element boundaries, but it does not admit the 
influence of the boundary. Since we have made no attempt to choose the Ni so as to satisfy the boundary conditions, we must 
use integration by parts to introduce the influence of the natural boundary conditions. 
 
Arch-Element Shape Functions  
Consider the arch-shaped element of Fig. 1 formed by circle arcs radii a, b, radii inclined at an angle 2α. 
 

 
 

Fig. 1. 2D Arched shaped element suitable for discretization of induction motor stator 
 
The shape functions can now be defined in terms of a set of non-dimensional coordinates with the help of cylindrical polar 
coordinates r, θ using the formula given below 
 

ρ =
r
a 	 ,γ =

θ − π
2ൗ

α  

The arch element with non-dimensional co-ordinates is shown in Fig. 2. 

 

 
 

Fig. 2. The non-dimensional arch shaped element 
 
The temperature at any point within the element be given in terms of its nodal temperatures by 

T = T୅N୅ + T୆N୆ + TେNେ + TୈNୈ                                                                        (7) 
Where the N’s are shape functions chosen as follows: 

N୅ =
(஡ିౘ౗)(ஓିଵ)

ିଶ(ଵିౘ౗)
     N୆ =

(஡ିౘ౗)(ஓାଵ)

ଶ(ଵିౘ౗)
 

Nେ = (஡ିଵ)(ஓାଵ)

ିଶ(ଵିౘ౗)
     Nୈ = (஡ିଵ)(ஓିଵ)

ଶ(ଵିౘ౗)
 

It is seen that the shape functions satisfy the following conditions:  
  (a)     That at any given vertex ‘A’ the corresponding shape function NA has a value of unity, and the other shape functions 

NB , NC, ……, have a zero value at this vertex. Thus at node j,  Nj  = 1  but  Ni= 0 ,  i    j .  
  (b)    The value of the potential varies linearly between any two adjacent nodes on the element edges.  
  (c)   The value of the potential function in each element is determined by the order of the finite element. The order of the 

element is the order of polynomial of the spatial co-ordinates that describes the potential within the element. The 
potential varies as a cubic function of the spatial co-ordinates on the faces and within the element.  
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Boundary Condition 
In this analysis the two dimensional domain of core iron and winding chosen for modelling the problem is shown in Fig. 3 
and the geometry is bounded by planes passing through the mid-tooth and the mid-slot. The temperature distribution is 
assumed symmetrical across two planes, with the heat flux normal to the two surfaces being zero. From the other two 
boundary surfaces, heat is transferred by convection to the surrounding gas. It is convected to the air gap gas from the teeth, 
to the back of core gas from the yoke iron. The boundary conditions may be written in terms of	ഃ೅ഃ೙, the temperature gradient 
normal to the surface 
1) Mid-slot surface ఋ்

ఋ௡ೞ
= 0 

2) Mid-tooth surface ఋ்
ఋ௡೟

= 0 

3) Air-gap surface  AG r
AG

Th T T V
n



    

Where T=Surface temperature, TAG =Air gap gas temperature 
4) Back of core surface  BC r

BC

Th T T V
n



    

Where TBC = Back of core gas temperature 
 
Approximate Numeric Form 
The heat flow equation may be formulated in Galerkin’s form, the solution being obtained by specializing the general 
functional form to a particular function, which then becomes the approximate solution sought. Focusing our attention on 
equation (6), we obtain through integration by parts. 
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Where nr is the r component of the unit normal to the boundary, and d∑ is a differential arc length along the boundary. 
Equation (8) takes the form 
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                                                          For i=A, B, C, D 
The surface integral (boundary residual) in equation (9) now enables us to introduce the natural boundary conditions. 
Equation (9) can be written with respect to the nodal temperatures as  
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For i=A, B, C, D 
There are four such equations as (10) for the four vertices of the element. These equations, when evaluated lead to the matrix 
equation 

   [[SR] + [Sθ] + [SH]][T] = [R] + [SC]                                                                 (11) 
 
[SR], [Sθ] are symmetric coefficient matrices (thermal stiffness matrices). 
[SH] is the heat convection matrix. 
[T] is the column vector of unknown temperatures. 
[R] is the forcing function (heat source vector). 
[SC] is the column vector of heat convection. 
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Method of Solution [12] 
The system of global equations as determined by equation (11) has to be solved in order to determine the nodal temperatures. 
The solution of this set of linear simultaneous equations is determined by Gauss method which takes the advantage of banded 
nature of the matrices. To save computer memory the symmetric matrix of half band width, efficiently stored by Gauss 
routine, by which extremely large problems can be effectively solved. 
 
Application to Slip-Ring Induction Motor 
Optimal design of large induction motor is a process that involves electrical and mechanical skills as well as thermal and 
fluid dynamic skills. It is necessary to improve the ventilation structure to decrease stator windings temperature below the 
permissible insulation material temperature. It has been observed that with proper optimization of machine parameters the 
convection heat transfer can be improved and as a consequence the energy efficiency of the motor will also improve. 
The problem concerns heat flow through core iron and winding in the stator of an induction motor. The stator being static is 
prone to high temperature and the temperature distribution of the stator only is computed here. The hottest spot is generally in 
the copper coils. The heat from the outer surfaces, i.e. the back of core surface and the air-gap surface is lost through 
convective mode of heat transfer. Thermal conductivity of copper and insulation are taken together for calculation. 
As the temperature is maximum at the central plane, the temperature distribution in the plane can be determined 
approximately by taking this as a two-dimensional r-θ problem with the following assumptions:- 

1) The temperature in the strip of unit thickness on the central axis is assumed to be fixed axially i.e., no axial flow of 
heat is assumed in the central plane. This assumption is permissible because in the central plane where the 
temperature distribution is maximum, the temperature gradient in the axial direction is zero. 

2) The convection is taken care of only at the cylindrical surfaces neglecting the convection at the end surfaces. 
Because of this assumption, the temperatures calculated in the central plane will be slightly higher than the actual. 
 

 
 

Fig. 3. Slice of core iron and winding of stator of slip ring induction motor bounded by planes at mid-slot and mid-tooth divided into arch 
shaped elements 

 
In this analysis, because of symmetry the two dimensional domain in cylindrical polar co-ordinate of core iron and winding 
chosen for modeling the problem and the geometry bounded by planes passing through the mid-tooth and the mid-slot are 
divided into finite elements as shown in Fig. 3. Arch shaped elements are used throughout the solution region.  
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Convective Heat Transfer Coefficient 
Two separate values of the convective heat transfer coefficient have been taken for the cylinder curved surface over the stator 
frame and the cylindrical air gap surface. 

[1] Natural Convection:- The natural convection heat transfer coefficient on cylindrical curved surface over the stator 
frame are dependent on Grashof number and Prandtl number and calculated as h=4.795 watt/m2 °C. 

[2] Forced Convection:- The heat transfer co-efficient on  forced convection for turbulent flow in cylindrical air gap 
surface are dependent on Reynolds number and Prandtl number and calculated as h= 76.84 Watt/m2 °C.	 

 
Thermal Conductivity 
For the steady state problem in two dimensions under considerations, the following properties are taken for each different 
material. 
1) Thermal conductivity in radial direction, Vr Watt/m°C  
2) Thermal conductivity in circumferential direction, Vθ  Watt/m°C 
 

Table 1. Typical Set of Material Properties for Induction Motor Stator 
 

Material Property Magnetic Steel Wedge Copper and Insulation 
Vr 33.07 2.007 
Vθ 0.826 1.062 

 
Calculation of Heat Losses [13] 
Heat losses in the teeth and yoke of the core are based on calculated magnetic flux densities (1.56 wb/m2 and 1.26 wb/m2 
respectively). In these regions, tooth flux lines are predominantly radial and yoke flux lines predominantly circumferential 
[13]. The grain orientation of the core punching’s in these two directions and therefore influences the heating for a given flux 
density. 
 

Table 2. Heat Losses Generated From Different Portions of Stator Slice 
 

Portion of Stator Slice Losses in Watt/mm3 
Stator Core 0.000032597 
Stator Tooth 0.000063033 

Copper Windings in Stator Slot 0.000304952 
 

Data Analysis 
In this report the two-dimensional finite element method was applied to analyze the temperature rise in stator slice portion of 
75 KW slip ring induction machine. The heat flux is assumed to be travelling along the stator of induction motor in order to 
obtain an optimum temperature distribution. It is observed that the stator copper loss has the highest value. So, it is evident 
that that the copper losses in the slot will have the highest operating temperature. In the stator slice, node numbers 44 to 48 
are present in the slot portion where the copper conductors are present and have maximum temperatures. It is further 
observed that the value of temperature increases from air gap boundary surface towards the back of core surface. 
Temperature distribution profile in various parts of the machine of stator slot, stator tooth and stator core have been depicted 
in Figs 4, 5 & 6 respectively. 
 
Conclusion 
The two-dimensional steady state finite element procedure for the thermal analysis of large induction motor stator provides 
the opportunity for the in-depth studies of stator heating problems. By virtue of the new, explicitly derived arch element, 
together with an efficient bandwidth and Gauss routine, extremely large problems can be efficiently solved. Though the 
results are approximate, the method is fast, inexpensive and leads itself to immediate visual pictures of the temperature 
pattern in a two-dimensional slice of iron core & winding in the stator of an induction motor. A number of other analysis can 
also be carried out, involving mechanical and electromagnetic fields, particularly where more than one of these fields are 
present. 
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Fig 4:-Temperature Distribution in Stator Slot 
 

 

 
 

Fig 5:-Temperature Distribution across and along Stator Tooth 
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Fig 6:-Temperature Distribution across and along Stator Core 
 
Appendix 
 
Symmetric Coefficient Matrices 
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Forcing Function Vector  
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Formulation of the Heat Convection Matrix on Cylindrical Curved Surface 
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Formulation of the Heat Convection Vector on Cylindrical Curved Surface 
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